An AC electrokinetic technique for collection and concentration of particles and cells on patterned electrodes.
نویسندگان
چکیده
We report an electrohydrodynamic effect arising from the application of alternating electric fields to patterned electrode surfaces. The AC fields were applied to dilute suspensions of latex microspheres enclosed between a patterned silicon wafer and an ITO-coated glass slide in a small chamber. The latex particles became collected in the center of the conductive "corrals" on the silicon wafer acting as bottom electrode. The particle collection efficiency and speed depended only on the frequency and strength of the field and were independent of the material properties of the particles or the electrodes. The leading effect in the particle collection process is AC electrohydrodynamics. We discuss how the electrohydrodynamic flows emerge from the spatially nonuniform field and interpret the experimental results by means of electrostatic and hydrodynamic simulations. The technique allows three-dimensional microfluidic pumping and transport by the use of two-dimensional patterns. We demonstrate on-chip collection of latex particles, yeast cells, and microbes.
منابع مشابه
Optically modulated electrokinetic manipulation and concentration of colloidal particles near an electrode surface.
We study a recently demonstrated AC electrokinetic technique for manipulation and concentration of colloidal particles on an electrode surface. The technique uses indium tin oxide (ITO)-based parallel-plate electrodes on which highly localized infrared (1064 nm) laser illumination is shone. We show that the highly localized laser illumination leads to a highly nonuniform heating of the electrod...
متن کاملOptically induced electrokinetic concentration and sorting of colloids
We demonstrate an optically induced ac electrokinetic technique that rapidly and continuously accumulates colloids on a parallel-plate electrode surface resulting in a crystalline-like aggregation. Electrothermal hydrodynamics produce a microfluidic vortex that carries suspended particles toward its center where they are trapped by local ac electrokinetic hydrodynamic forces. We characterize th...
متن کاملElectrokinetically driven micro flow cytometers with integrated fiber optics for on-line cell/particle detection
This paper presents an innovative micro flow cytometer which is capable of counting and sorting cells or particles. This compact device employs electrokinetic forces rather than the more conventional hydrodynamic forces technique for flow focusing and sample switching, and incorporates buried optical fibers for the on-line detection of cells or particles. This design approach results in a compa...
متن کاملAC Electrophoresis; Deposition of Ceramic Nanaoparticles on In-plane Electrodes at Low Frequencies (RESEARCH NOTE)
Deposition of ceramic nanoparticles (dispersed in a non-aqueous suspension) on in-plane electrodes and under the influence of AC electric fields in the frequency range of 0.01 Hz - 10 kHz is investigated. Analysis of the particle response to the applied field is a difficult task due to the mutual effect of electric- and hydrodynamic force which are present in the system. In this work, however, ...
متن کاملAffectability of ceramic nanoparticles of different compound from surface characteristics in AC electrophoretic deposition
Surface characteristic of particles is one of the main parameters controlling the properties of deposited layer in electrophoretic deposition. To modify the surface characteristic of particles, one of the methods is the addition of additives to the suspensions of powder-solvent. There are many reports dealing with the effect of surface characteristics of particles on uniformity and pattern of d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 21 14 شماره
صفحات -
تاریخ انتشار 2005